
Parallelized String Art

Parallelized String Art
Catherine Tianhong Yu: tianhony@andrew.cmu.edu

Nanxi Li: nanxil1@andrew.cmu.edu

Figure 1: Example inputs and outputs with output diameter 1024px and 512 pins. Output on the left took 6171.59s to compute,
and the output on the right took 7498.95s to compute.

1 SUMMARY
String art is an image solely composed of strings between pins

around a circular canvas. We implemented a parallelized string art

solver in C++ and CUDA that computes the string art best resem-

bling the input image. We developed our algorithm from scratch

based on the sequential greedy approach proposed in paper by

Brisak et al[1]. We modified the proposed algorithm while imple-

menting our sequential version of the solver, so that algorithm

would have more parallelism to exploit while outputting more ac-

curate string art image. We then developed our parallel version of

the solver, which produces the same output as the sequential solver

in a considerably shorter runtime. We were able to achieve an over

221x speedup on a 512*512 image with 128 pins.

2 BACKGROUND
First of all, what is string art? String art is a technique for the cre-

ation of visual artwork where images emerge from a set of strings

that are spanned between pins[1].

Let 𝑃 be the number of pins that spans the edge of the circular

canvas evenly, and As we researched for solutions to this problem,

there were 2 main types of solutions, both of which assume opaque

threads:

• Greedy Approach: Starting from a pin 𝑝0, the algorithm

finds the pin 𝑝1, 𝑝1 ≠ 𝑝0, that the string between the 2 pins

best fits the given image. Then starting from 𝑝1, the algo-

rithm finds the pin 𝑝2, 𝑝2 ≠ 𝑝0 that best fits the given image,

until there is no new connecting between 2 pins can make

the fit better, or a maximum number of strings reached. Note,

the algorithm finds strings that are continuous (i.e, a string

can only start from a pin where the previous string ends).

• ModifiedGreedyApproach: Themodified greedy approach

compensates for the fact that the greedy approach has the

disadvantage of making decision of adding a string at an

early stage that will later turn out to be a bad choice. In our

case, an addition of one edge might bring the biggest benefit

when it is chosen, but can then prevent a better solution

later on. Thus, Brisak et al. proposed to further improve

the results by an iterative removal of edges. (Figure 3). In

particular, when the initial addition stage terminates, the

modified greedy approach algorithm iteratively choose a

string to test if removing that string will result in a better

fit. If the removal of the string will result in a better fit, the

string will be removed. The algorithm continues to search

for strings whose removal can result in a better fit until no

better fit from removal can be found. The algorithm then

starts a second round of string adding. The algorithm al-

ternates between the addition stage and the removal stage,

until it is not possible to further improve the norm and the

algorithm terminates. In addition, this algorithm further im-

proves the quality of output by allowing strings to start from

an arbitrary pin.

Figure 2: Construction of string art.[1]



Catherine Tianhong Yu: tianhony@andrew.cmu.edu
Nanxi Li: nanxil1@andrew.cmu.edu

Another algorithm is then applied to make the found pin

pairs into a fabricable string art image. Since fabricability is

not the goal of this project, we will not include this part of

the algorithm.

Figure 3: Screenshot of the algorithm taken from[1].

For the Greedy approach, when looking for line to add, it checks

at max 𝑃 pin pairs(fixed starting pin). For the modified greedy ap-

proach, when adding, it checks for at max 𝑃2 pin pairs, and when

removing, it checks all the added pin pairs, which is bounded by

𝑃2. We chose to use theModified Greedy Approach because the

output resembles the input better. However, since the problem is

more complex, it is more challenging to implement a solver based

on this algorithm.

We removed the assumption for completely opaque strings in our

implementation. Our implementation allows overlay of strings. In

other words, the cross point of 2 strings would appear to be darker

than the strings themselves. This results in better resemblance at

low resolution, which is crucial since high resolution images would

take too long to be processed by the sequential solver. More impor-

tantly, this change allows us to exploit the string-level parallelism

in the removal stage (refer to section 3 for more details), which

contributes to the overall speedup massively.

Figure 4: Left: small resolution output on problem size 𝐷 =

256, 𝑃 = 128 using opaque string as assumed in the algorithm
in Figure 3; Middle: input image with pins graphed; Right:
same problem size as the Left but using our approach after
removing the assumption of completely opaque strings

3 OURWORK FLOW
3.1 Overall Work Flow
Our work flow is illustrated in Figure 5) and our solver is shown as

the pink box in Figure 5).

The input to our framework is a colored image(for benchmarking

purpose, we used grayscale images for easier contrast tuning). We

convert it into a integer number representation in the range of [0,

255] and denote it further as the column vector:

𝑦 ∈ [0, 255]𝑚 ⊂ Z𝑚 (1)

where𝑚 is the number of all pixels, concatenated row-wise. The

output of the optimization algorithm is a binary array, where each

entry corresponds to an edge which could be drawn on the canvas.

Activated bins reflect edges which need to be drawn. We denote

the output as the column vector

𝑥 ∈ B𝑛 (2)

where 𝑛 is the number of all possible string edges. It has the dimen-

sional of 𝑃 (𝑃 − 1).
The goal of the optimization problem is to determine the best way

to to define a mapping F from the space of edges to the space of

pixels, i.e.,

𝐹 : B𝑛 → [0, 255]𝑚 with 𝑥 ↦→ 𝐹 (𝑥) (3)

and to determine the values of the elements of the vector x such

that it delivers the best approximation of the input image. We cast

the problem into a binary non-linear least squares optimization

task:

min

𝑥
∥𝐹 (𝑥) − 𝑦∥2 s.t. 𝑥 ∈ B (4)

And the optimization is solved using the algorithm in Figure 3.

3.2 Parallelism Analysis in Solver
Figure 6 illustrates the workload that we parallelized. Like men-

tioned above, there are at max 𝑃2 pin pair combinations to check for

when adding and removing a string. For each pin pair, we compute

the L2 norm between:

• constructed image with the string edge specified by the pin

pair added/removed

• original image

Addition Stage: Computing the L2 norm for each pin pair while

adding the line is trivial. The L2 norm after adding a line can be

calculated in parallel without any data dependency, because they

are all reading the same original image and constructed image and

makes no alteration to the images. All of the threads only computes

what the L2 norm would be if all pixels representing the string

between 2 pins is covered by an additional string.

Removal Stage: If we assume the lines are completely opaque,

it is impossible to exploit string-level parallelism in the removal

stage with a limited memory footprint. The reason is that when con-

sidering removal of a string, naively coloring all pixels representing

the string white results in very inaccurate L2 norm calculation: if

the pixel is also in the path of another string, the pixel should still

be black while the string is removed. The only way to parallelize



Parallelized String Art

strings in the removal stage is to re-construct the image completely

with the string removed. This approach required each thread storing

its own copy of the re-constructed image. Such memory footprint

requirement is not achievable given that the problem at max has

𝑃2 pin pairs.

Hence, instead of assuming the lines to be opaque, we allows

overlapping of strings. The cross point of two strings appears to be

darker than the rest of the strings that are not overlapped. In this

way, when calculate L2 norm with a string removed, the algorithm

computes the L2 norm with all pixels representing the string be-

tween 2 pins being a shade lighter. This way, the expected L2 norm

after a removal is an approximate value very close to the L2 norm

value calculated from re-constructing the image. The algorithm

corrects this small approximation by re-constructing the image

after the decision of removing a string is being made.

Solver ImplementationDetails: Let𝐷 be the diameter of the out-

put image. To compute the L2 norm with one line added/removed,

we first need to find the pixels that represent the line between the

2 pins. This can be done in 𝑂 (𝐷) by simply calculating the slope

between the 2 pins. Then we need to look at every single pixel

in 𝑂 (𝐷2) to calculate the norm. Each subproblem has complexity

𝑂 (𝐷2) which is costly even when the image is not huge. We un-

derstand there is also pixel-level parallelism in this subproblem.

However, with the limitation of memory footprint, it will exceed

the hardware limit of CUDA if we were to exploit pixel-level paral-

lelism while exploiting string-level parallelism.

In otherwords, we parallelized finding the𝑚𝑖𝑛 to perform𝑎𝑟𝑔𝑚𝑖𝑛

on Figure 3. All other computations in a iteration of the while loop
can be done in constant time, but we still have the dependency

between each iteration of the while loop.

4 APPROACH
We could not find any C/C++ implementation but we had reference

to matlab [2] Java [3] implementations, in addition to the psue-

docode in the paper[1]. We also did not want to use any libraries

other than file I/Os to enable the most flexibility in parallelization

it using cuda.

In the rest of the section, we will first introduce the approaches

of the sequential and Cuda versions that we benchmarked on, and

then discuss what did and did not work.

4.1 Sequential Version
Image is stored in a 1D char* array of size 𝐷 ×𝐷 , concatenated by

rows.

Pin pairs found are stores in 2 separate int arrays of size 𝑃 (𝑃 − 1).
Which one of the pin gets stores in whichever array does not matter,

but elements at the same index in the 2 arrays form a pin pair.

Finding a line to add: For each pin pair, we copy the constructed

image(constructed by chosen lines) and try ’adding’ the line by

increasing the pixel value of the constructed image. Then compute

L2, and update the best pin pair and norm found as pin pairs are

Inputs: 
- image
- output width(w)
- number of pins

Outputs:
- string art instruction
- visualization

Find pin locations

Crop the image
to 

a circle with
diameter w 

Convert the
image to gray

scale

Invert image
so that a darker

pixel
has higher

value

Image  Preprocessing

Find string paths

Expensive! 
But

parallelizable!

Figure 5: System flow diagram for the string art problem.

no
addition

nor
deletion

can
further

minimize
the norm

Add a string
that minimizes

the norm

Remove a
string that

minimized the
norm

if there is
more string
additions

that
minimizes
the norm

if there is
more string
removal that
minimizes
the norm

no
addition

can
further

minimize
the norm

no
deletion

can
further

minimize
the norm

Find string paths

Figure 6: Our algorithm finds the optimal solution to string
paths

iterated.

Finding a line to remove: For each chosen line, we copy the

constructed image(constructed by chosen lines) and try ’removing’

the line by decreasing the pixel value of the constructed image.

Then compute L2, and if the new norm is better the current norm,

remove the pin pair and update current norm to new norm.

4.2 CUDA Version & Mapping to NVIDIA GPUS
The data structures used in CUDA are exactly the same. We pur-

posefully modified our sequential version to make the the two

implementations to use the same data structures and produce the

same outputs.



Catherine Tianhong Yu: tianhony@andrew.cmu.edu
Nanxi Li: nanxil1@andrew.cmu.edu

Finding a line to add: BlockDim(16, 16), gridDim((P+15)/16,
(P+15)/16) so each block has 256 threads, and each thread
has a ’unique’ pin pair combination, and vice versa each pin
pair combination has a unique thread. Note here that (𝑝0, 𝑝1)
and (𝑝1, 𝑝0) refer to the same pin pair, so they each will receive a

thread, but they will be doing the exact same computations. We are

doing the same work twice, but since all computation is done in

parallel, this would only increase the runtime marginally(in terms

of overhead of launching the threads). The ease of implementation

for indexing justifies the marginal increase overhead here. Each

thread receives original image data and constructed image data

from the host using cudaMemcpy, compute the expected L2 norm

with the line "added", and returns the norm found back to the host

using cudaMemcpy. The host then decides which line to add and

re-construct the image.

Finding a line to remove: Let 𝐿 be the length of pin pair arrays,

i.e. the number of pin pairs found. blockDim(256), gridDim((L +
15)/16), so each block has 256 threads, and each thread has
a unique pin pair found, and vice versa, each pin pair found
has a unique thread. Each thread receives original image data and

constructed image data from the host using cudaMemcpy, compute

the expected L2 normwith the line "removed’, and returns the norm

found back to the host using cudaMemcpy. The host then decides

which line to remove and re-construct the image.

This way, there is no data dependency between each thread, and

thread is only accessing device data. Host loops through all norms

returned and find the corresponding best one for adding/removing.

We could further improve by using CUDA to reduce.

4.3 What did not Work
4.3.1 As-Is Algorithm Proposed in Paper. Like mentioned in our

proposal, we anticipated the challenge of implementing a sequential

version that contains all the data structures ready to be parallelized.

Because our sequential version was extremely slow(Brisak et al.’s

paper mentioned that some of the their solutions took 14+h to

generate), we weren’t able to see how our algorithm perform with

larger inputs. The largest problem we were able to see output for

on ghc machines without getting connection dropped(even with

nohup) were 𝐷 = 512, 𝑃 = 128 which still took hours. Addition-

ally, the image outputted is far from resembling the input images

because the opaque string method proposed in paper only shows

resemblance in high resolution result (Brisak et al.’s paper used

𝐷 = 4096, 𝑃 = 512).

4.3.2 Opaque Assumption. We implemented the parallel version

to run a larger problem and further confirm the ’correctness’ of

our sequential code. In order to match the algorithm between se-

quential and parallel version, we have to develop parallel version as

the same time as altering the sequential implementation. In order

to parallelize the removal stage, we decided to change the opaque

strings assumption proposed by the paper. The change to this as-

sumption also allows us to output low resolution image with high

resemblance to the input.

4.3.3 Queue as Data Structure. Our initial sequential code used
a queue to store the strings that we have placed on the canvas.

However, a queue is not a good data structure to exploit string-

level parallelism since we want all strings stored in the queue to be

accessed at the same time.

4.3.4 Pixel-Level Parallelism. In our 3.2 descriptions, we only had

line level parallelism, but we also attempted pixel level parallelism

in finding pixels associated with line and pixel shadings. We didn’t

get improvements from it because finding pixels associated with

line is done for each line, so to parallelize it at a pixel level, we

have to launch a kernel and allocate considerable amount of mem-

ory for storing pixel info. The memory consumption exceeded the

hardware limit, so it is impossible to exploit pixel level parallelism

expect for launch kernel in batches. The overhead of batching ker-

nel launch is bigger than the speedup this parallelism can bring

us.

4.4 What did work
4.4.1 Non-Opaque Strings. As mention in 3.2, we adapted non-

opaque strings avoid redrawing the constructed image for every

possible string removal. We also noticed that giving pixel values

∈ {0, 255} to pixels not only makes the output looks not as pretty as

desired, it also adds difficulties to L2 norm calculation since instead

of being either black or white, each pixel value can be ∈ {0, 255}
when considering additional or removal. We used a more com-

plex algorithm for calculating L2 norm, ensuring that the result is

accurate. In this way, whenever we try to add/remove a line, we

add/subtract a constant from the involved pixel, instead of redraw-

ing the constructed image when checking for each removable line.

This change not only made our CUDA implementation to have a

great performance, it also made the output images MUCH MORE

aesthetic.

4.4.2 Array as Data Structure. We used int array to store all types

of data: all intermediate images, pixel information for strings, pin

locations, L2 norms. This data structure allows us to access all

entries stored at the same time. We used this fact to avoid any

locks or barriers needed for our parallel solver, avoiding potential

synchronization cost. With this data structure, we were able to

combine a nested while loop(outer while loop is equivalent to the

while loop in Figure 3, and the inner while loop loops through all

found pin pairs) into one while loop where line removal has the

same behavior as line addition: one line per iteration.

4.4.3 String-level Parallelism. We exploited all parallelism at string-

level, both in the addition and removal stage. The more detailed

analysis of parallelism is in 3.2. By exploiting all string-level paral-

lelism, we were able to achieve an over 221x speedup on a 512 ∗ 512
image with 128 pins.

5 RESULTS
To evaluate our results, we ran benchmarking on GHC47-86 ma-

chines containing the NVIDIA GeForce RTX 2080 B GPUs. The

baseline algorithm is designed for a single thread CPU and it was

also ran on GHC47-86 machines. We measured clock times(in sec-

onds) for computing the pin pairs needed to fabricate the string

art(pink box in Figure 5). Clock times are used to analyze how our



Parallelized String Art

Figure 7: Example inputs and outputs using our system. Left to right image labels: catherine, nanxi, emma, unicorn, peace;
First row: inputs; Second row: 𝐷 = 512, 𝑃 = 128 outputs; Last row: 𝐷 = 512, 𝑃 = 256 outputs. These are all outputted by our CUDA
implementation. Notice given the same output image size, increasing the number of pins improves quality. Different contrast
level are manually applied to these images, so some of the outputs appear darker/lighter than expected.

parallel implementation scales and compute the speedup to mea-

sure CUDA implementation performance.

Figure 7 displays the inputs(first row) we ran benchmarks on, and

their outputs produced by CUDA implementationwith𝐷 = 512, 𝑃 =

128(second row) and 𝐷 = 512, 𝑃 = 256(last row). In the rest of the

section, we will analyze the performance of our CUDA implemen-

tation by:

• comparing CUDA execution time with sequential execution

time

• comparing CUDA execution time for fixed number of pins,

but different image sizes

• comparing CUDA execution time for fixed image size, but

different numbers of pin

5.1 Comparing CUDA execution time with
sequential execution time

In Figure 8, when the problem size of 𝐷 = 512, 𝑃 = 128 is quite

large, it takes 4 hours to compute the pin pairs sequentially, while

our CUDA implementation can solve the same problems in 2 min

with speedup of 72x-222x. Looking at these numbers, we are proud

to say that GPU was definitely a good choice for our problem!

For a smaller problem size like in Figure 9, where the problem

size is 𝐷 = 128, 𝑃 = 64. It takes 1.5min to compute the pin pairs

sequentially, while our CUDA implementation can solve the same

problems in 2s with speedup of 25x-42x. We can also see that the

execution time varies quite a lot using the sequential version, but

the variation is much smaller using CUDA. We speculate that this

because this is because of the relatively small number of while
loop iterations.

For a even smaller problem size in Figure 13, where the prob-

lem size is 𝐷 = 128, 𝑃 = 32. It takes 2.5s to compute the pin pairs

sequentially, while our CUDA implementation can solve the same

problems in 1s with speedup of 2x. We see that there is not much

variance among images, and this is caused by when the image size

and number of pins are small, different input images will yield the

same output which causes similar execution time. However, even

with small problems like this with cudaMemcpy overheads, we still

see a bit speedup.

We can see that problem sizes are very important in our problem,

and our CUDA implementation parallelism performance heavily

depends on both image size and number of pins. Let’s also take a

look at execution times using cuda with a fixed parameter.



Catherine Tianhong Yu: tianhony@andrew.cmu.edu
Nanxi Li: nanxil1@andrew.cmu.edu

Image Name catherine peace unicorn nanxi emma

CUDA time(s) 102.24 77.98 106.26 122.7 179.14

sequential time(s) 17883.5 17290.8 7644.04 19732.6 16735.6

speedup 174.92 221.73 71.94 160.82 93.42

Figure 8: Comparing CUDA execution time with sequential
execution time for 𝐷 = 512, 𝑃 = 128

5.2 Comparing CUDA execution time for fixed
number of pins, but different image sizes

With number of pins fixed, as the diameter increases linearly, and

the total number of pixels increases quadratically, our execution

time is consistently heavily affected by the image size changing.

Even though we don’t have any pixel level parallelism, the distances

between pin pairs increases as image size increases, and calculating

the norm becomes more expensive. Therefore increasing image size

increases the workload for each thread.

while loop. Furthermore, as image size increases, more pin pairs

will be added to output pin pairs which adds to our sequential

Image Name catherine peace unicorn nanxi emma

CUDA time(s) 2.01 2.67 2.03 2.91 3.02

sequential time(s) 51.06 95.9 86.75 57.25 94.67

speedup 25.40 35.92 42.73 19.67 31.35

Figure 9: Comparing CUDA execution time with sequential
execution time for 𝐷 = 128, 𝑃 = 64

Image Name catherine peace unicorn nanxi emma

CUDA time(s) 1.14 1.12 1.12 1.11 1.14

sequential time(s) 2.54 2.61 2.57 2.59 2.61

speedup 2.23 2.33 2.295 2.33 2.29

Figure 10: Comparing CUDA execution time with sequen-
tial execution time for 𝐷 = 128, 𝑃 = 32



Parallelized String Art

5.3 Comparing CUDA execution time for fixed
image size, but different numbers of pin

With the image size fixed, as the number of pins increases linearly,

the number of pin pairs increases quarandically, our execution time

is again consistently heavily affected by the image size changing.

Although we have line level parallelism, we are again bottlenecked

by the sequential while loop, because we now have more edges

to add/remove, which means the number of while loop iterations

drastically increases as well. We did not make measurements for

these, but we speculate that the increase in while loop iterations

contributed to the most of the differences here.

Image Name catherine peace unicorn nanxi emma

D=128 P=128 time(s) 3.23 4.03 2.78 3.05 4.62

D=256 P=128 time(s) 16.48 17.58 15.05 16.75 24.77

D=512 P=128 time(s) 102.24 77.98 106.26 122.7 179.14

Figure 11: Comparing CUDA execution time with fixed
number of pins 𝑃 = 128 and different image sizes of 𝐷 ∈
{128, 256, 512}

On another note, from analysis in Section 4.1, we believe that

the larger the problem size, the better the speedup is! Though are

not sure that if the problem size continues to increase, the increase

in memory needed to store images and pin pairs will harm the

performance. In Figure 1, problems of size 𝐷 = 1024, 𝑃 = 512

took 1h. Although we weren’t able to measure the speedup because

the sequential version will likely take days, we believe that the

speedup still increases with such problem size.

To conclude the result section, we believe that GPU was a great

choice as we have many independent sub-problems that are easily

parallelized. Our parallelism performance is heavily problem size

dependent, the larger the problem size is, the better the speedup is.

And the sequential while loop limits the speedup.

6 CREDIT
The work for this project was evenly distributed between the two

of us. We both did our own research for the problem and always

Image Name catherine peace unicorn nanxi emma

D=512 P=64 time(s) 21.46 21.81 21.82 21.93 21.84

D=512 P=128 time(s) 102.24 77.98 106.26 122.7 179.14

D=512 P=256 time(s) 298.08 578.63 308.9 340.03 471.63

Figure 12: Comparing CUDA execution time with fixed im-
age size 𝑃 = 𝐷 = 512 and different number of pins 𝑃 ∈
{64, 128, 256}

discussed the design of our algorithm before one of us took the

lead on the implementation. Catherine led the sequential imple-

mentation, and Nanxi led the parallel implementation based on our

availability for the duration of the project. We also distributed the

work for benchmarking and writeups.

Figure 13: 𝐷 = 512, 𝑃 = 256 outputs for Professor Mowry and
Professor Railing using our CUDA implementation

REFERENCES
[1] Michael Birsak et al. “String art: towards computational fabrication of string

images”. In: Computer Graphics Forum. Vol. 37. 2. Wiley Online Library. 2018,

pp. 263–274.

[2] Exception1984. Exception1984/StringArt. url: https://github.com/Exception1984/

StringArt.

[3] Jblezoray. jblezoray/stringart. url: https://github.com/jblezoray/stringart.

https://github.com/Exception1984/StringArt
https://github.com/Exception1984/StringArt
https://github.com/jblezoray/stringart

	1 SUMMARY
	2 BACKGROUND
	3 OUR WORK FLOW
	3.1 Overall Work Flow
	3.2 Parallelism Analysis in Solver

	4 APPROACH
	4.1 Sequential Version
	4.2 CUDA Version & Mapping to NVIDIA GPUS
	4.3 What did not Work
	4.4 What did work

	5 RESULTS
	5.1 Comparing CUDA execution time with sequential execution time
	5.2 Comparing CUDA execution time for fixed number of pins, but different image sizes
	5.3 Comparing CUDA execution time for fixed image size, but different numbers of pin

	6 CREDIT

